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We propose the principle of equal sacrifice to determine the class of ``vertically
inequitable'' progressive taxes. A necessary condition for an income tax function to
be equal sacrifice is formulated, and hence, a subclass of progressive taxes which can-
not inflict the same sacrifice upon all individuals relative to any strictly increasing
and concave utility function is determined. Conversely, it is shown in a general
framework that any convex (thus progressive) tax function satisfies the principle of
equal sacrifice. Our findings point to the fact that equal sacrifice under progressive
income taxation depends heavily upon the degree of marginal rate (as opposed to
average rate) progressivity. Journal of Economic Literature Classification Numbers:
D63, H20. � 1997 Academic Press

1. INTRODUCTION

An important criterion of redistributive justice formulated in the realm of
income taxation is the following:

An income tax function should decrease income inequality (in the
sense of relative Lorenz dominance) for any given pre-tax income
distribution.

This criterion is typically referred to as the ``principle of progressivity,''
for it is now well-known that an income tax function satisfies this prin-
ciple if, and only if, it is a progressive tax (that is, its average tax rate is
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increasing).1 This observation may very well account for the striking fact
that almost all countries (and certainly all OECD countries) use (statutory)
progressive income tax schemes. But a fundamental question remains: are all
progressive taxes equitable?

A reformulation of John Stuart Mill's famous maxim of income ``taxation
so as to inflict equal sacrifice'' leads us to another compelling redistributive
justice principle:

An income tax function must yield equal sacrifice to all individuals
relative to at least one acceptable social norm (or, a utility function
for the representative agent of the society).

Following Young [31], we call this maxim ``the principle of equal sacrifice''
and contend that it is a useful fairness criterion. True, it is by no means suf-
ficient for determining ``equitable'' taxes perforce, for such a determination can
only be done relative to the ``actual'' social norm that summarizes the
preferences of the society, or even better, relative to the ``true'' preferences of
the individuals. But the principle is certainly very effective in elucidating
``inequitable'' taxes, for, by implication, an income tax function not satisfying
the principle of equal sacrifice guarantees unequal sacrifice relative to any
possible social norm (utility function for income), and thus in particular,
relative to the true preferences of the constituents of the society.2

In this note, we attempt to understand the equity properties of
progressive income taxes in the light of the principle of equal sacrifice (or
put differently, from the perspective of the doctrine of ``ability to pay'' (cf.
Musgrave [21]). An immediate question is then the following: do all
progressive tax functions satisfy the principle of equal sacrifice? We show
that the answer is negative by determining a subclass of progressive taxes
which fail to satisfy the principle. Roughly speaking, progressive taxes
which are ``sufficiently non-convex on a neighborhood'' cannot yield equal
sacrifice for any concave and strictly increasing utility function.3 This result
illustrates that there is merit in combining the principle of progressivity
with the principle of equal sacrifice to pave way towards a theory of equi-
table income taxation.

The next question is, of course, whether or not the principles of progres-
sivity and equal sacrifice are compatible. We find that they are, and establish
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1 See, for instance, Jakobsson [13], Fellman [10], Eichhorn et al. [7], and Lambert [16].
2 There is now a small literature on the various aspects of equal sacrifice income taxation:

see Richter [25], Buchholz et al. [4], Young [30, 31, 32], Yaari [29], Berliant and Gouveia
[1], Ok [23], and Mitra and Ok [19].

3 This observation is by no means inconsequential from a practical point of view. For
example, one can check that Turkish (statutory) personal income tax was ``sufficiently non-
convex'' around TL 25,000,000 between 1981 and 1985 to guarantee (by Theorem 1) that it
was a progressive but not an equal sacrifice income tax (cf. [22, p. 286]). See also Example 1.
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that all convex progressive taxes do satisfy the principle of equal sacrifice.
These results show that equal sacrifice under progressive personal income
taxation depends heavily upon the degree of marginal rate progressivity (as
opposed to the more conventional average rate progressivity).4

Our findings extend those reported in Mitra and Ok [19] where it is
shown that marginal rate progressivity of tax functions and the equal
sacrifice property are essentially equivalent provided that the tax functions
are defined piecewise linearly and that the utility function of the repre-
sentative agent for income is differentiable near the origin. Unfortunately,
these two assumptions turn out to be excessively demanding, and in fact,
they may well be the real source of Mitra and Ok's characterization of the
equal sacrifice tax functions. The present results illustrate that the basic
message of [19], however, carries over to a very general framework where
neither of these undesirable assumptions are adopted: a progressive income
tax need not be equal sacrifice; one rather needs the marginal rate progres-
sivity to ensure that equal sacrifices will be imposed upon all (relative to a
permissable utility function).

On the other hand, the (almost everywhere) equivalence of marginal
progressivity of tax functions and the equal sacrifice property need not
hold when we relax the structural assumptions of Mitra and Ok [19].
Indeed, our present results remain silent with respect to a particular sub-
class of tax functions, roughly speaking that of ``mildly non-convex'' tax
functions. Moreover, we show here that this subclass contains both kinds
of the tax functions; those that satisfy the principle of equal sacrifice and
those that do not. Of course, finding out exactly which members of this set
are actually equal sacrifice tax functions is of interest, for only then a full
characterization of non-equitable progressive taxes will be achieved.
However, this problem remains open for the moment.

The organization of the paper is described next. In Section 2 we provide
precise formulations of the key concepts of the present note. Section 3
states and discusses our main results. It is in this section that we determine
some useful subclasses of the sets of progressive equal sacrifice and
progressive unequal sacrifice post-tax functions. The above mentioned open
question is also formally put forth in this section. In Section 4, we discuss
the robustness of our results and find that they are not tight with respect
to the relaxation of technical hypotheses. Potential extensions of our
findings are also pointed out in this section by means of several examples.
The final section supplies the proofs of our main results.
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4 1991 U.S. Federal (Statutory) Income Tax is, therefore, found to be respecting the prin-
ciple of equal sacrifice by virtue of its marginal rate progressivity (see footnote 7). In fact, by
the same token, 1979�89 federal effective income tax functions estimated by Gouveia and
Strauss [11] are all equal sacrifice. (See, however, Mitra and Ok [19] for markedly different
conclusions with regard to 1988�90 federal statutory income taxes.)
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2. PRELIMINARIES

By a post-tax function, we mean a continuous, right differentiable and
surjective function f : R+ � R+ (that associates to pre-tax income x a post-
tax income f (x)) such that the following conditions hold:

(A1) f (0)=0 and 0< f (x)<x for all x>0,
(A2) 0< f $+(x)<1 for all x�0, where f $+(x) denotes the right

derivative of f at x,
(A3) x [ f (x)�x is a Lipschitz continuous mapping near the origin;

that is, there exists ( y, K) # R2
++ such that

} f (x)
x

& f $+(0) }�Kx for all x # (0, y].

The set of all post-tax functions are denoted by F. (Notice that, given a
post-tax function f # F, the tax liability levied on income level x>0 is
t(x)#x& f (x).)

(A1) is a fairly standard assumption positing that zero income earners
do not pay any taxes and that if one earns a positive income, he�she has
to pay a positive amount of taxes which must be less than his�her taxable
income.5 (A2) is also quite standard and assures that a higher income
earner pays a higher level of taxes than a lower income earner and that the
ranking of taxpayers by pre-tax income and post-tax income is the same.
(In other words, by virtue of (A2), we focus only on non-confiscatory taxa-
tion schemes. Such tax functions are sometimes referred to as incentive
preserving in the literature (cf. Fei [8], Eichhorn et al. [7] and Ok [23]).6)

In the literature on income taxation, analyses are typically conducted in
terms of differentiable tax functions. Although there is nothing wrong with
the differentiability assumption, it clearly makes it difficult to relate the
study to the actual taxation practice since the statutory income taxes are
typically designed as continuous piecewise linear functions.7 On the other
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5 Since a post-tax function f such that f (0)>0 does not impose any sacrifice on some
members of the society, and hence, since it cannot then impose equal sacrifice upon all, as also
in Young [30, 31], negative income taxation is excluded from the present study. Conse-
quently, our analysis is conducted solely in terms of statutory income (post-)tax functions.

6 We note that some authors identify the notion of horizontal equity with that of incentive
preservation (cf. Feldstein [9], Plotnick [24] and King [14]). Yet, as argued by Berliant and
Strauss [2], such a definition of horizontal equity is not uncontroversial.

7 For example, 1991 U.S. Federal Income Tax for single persons was of the following form:

0.15x, 0�x<20250

t(x)#{0.28x&2632.5, 20250�x<49300.

0.31x&4111.5, 49300�x

The associated post-tax function is of course given by f (x)=x&t(x) for all x�0.
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hand, if one concentrates only on continuous piecewise linear tax functions,
then relating the analysis to the existing literature on income taxation
becomes a problem. By assuming only continuity and right differentiability
of f and (A3), our framework covers both smooth tax functions and con-
tinuous piecewise linear tax functions as special cases. Therefore, although
they are a bit tedious to state, these assumptions should be viewed as weak
regularity conditions which allow for a definitive generality of analysis.8

A post-tax function f # F is said to be progressive if the average post-
tax function x [ f (x)�x is decreasing (i.e., the average tax rate t(x)�x is
increasing). One can easily show that a concave (marginal rate progressive)
post-tax function (i.e., a convex tax function) is progressive but the con-
verse statement does not hold.9 We shall denote the class of all progressive
post-tax functions by Fprog.

By an equal sacrifice post-tax function, we mean a post-tax function
f # F such that

_c>0: [\x>0: [u(x)&u( f (x))=c]] (1)

holds for at least one concave and strictly increasing utility function
u: R++ � R.10, 11 This definition is identical to that of Young [31] except
that Young requires (1) to be satisfied by a continuous and strictly
increasing utility function. But Ok [23] shows that any f # F is, in fact,
an equal sacrifice post-tax function with Young's definition. Therefore,
demanding the concavity of the utility function of the individuals is essen-
tial to the theory (cf. Mitra and Ok [19]). Moreover, the assumption of
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8 We shall, in fact, later demonstrate that (A3) is not a necessary condition for our results
to hold.

9 Define f # F as

3x�4, 0�x<1

f (x)#{(x�4)+1�2, 1�x<2.

x�2, 2�x

One can easily check that x [ f (x)�x defines an everywhere decreasing mapping while f is not
concave around 2.

10 One can easily show that (1) holds for some concave and strictly increasing u: R++ � R
if and only if

_c>0: [\x>0: [v(x)=cv( f (x))]]

holds for some concave and strictly increasing v: R++ � R. Therefore, an equal sacrifice post-
tax function can be thought of as both an equal absolute sacrifice and an equal proportional
sacrifice post-tax function.

11 As noted by Young [32], this definition of equal sacrifice taxation is best interpreted by
considering u as standing for the preferences of a representative agent of the society, and thus
acting as a social norm. Of course, this interpretation saves the principle of equal sacrifice from
necessitating interpersonal utility comparisons.
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decreasing marginal utility is almost exclusively made in the related public
finance literature. By virtue of the usual arguments favoring risk averse
behavior, we feel that it is a well-justified assumption.

We should emphasize that, given an equal sacrifice post-tax function, all
we know is the existence of a well-behaved utility function relative to which
everyone sacrifices equally. Since this utility function may not be a good
approximation of the agents' true preferences for income, one cannot con-
clude that an equal sacrifice post-tax function is, in fact, vertically equitable.
However, if a post-tax function is not equal sacrifice, then we can infer that
it cannot inflict the same sacrifice upon everyone relative to any sensible
utility function. It follows that there is a clear sense in which such taxes are
vertically inequitable. Therefore, the principle of equal sacrifice is not an
inclusion principle identifying the equitable taxes, but is an exclusion prin-
ciple determining the inequitable taxes from the perspective of ability to
pay doctrine.

Finally, let us note that our present inquiry is exclusively equity based;
in other words, the efficiency aspects of taxation are completely ignored. In
particular, we have so far given no reference to the important issue of tax
revenue requirement. The usefulness of the equal sacrifice principle may
then appear suspect, for, one may argue, an equal sacrifice tax may raise
significantly inadequate levels of tax revenue. This argument is, however,
misleading since, given any equal sacrifice post-tax function and a feasible
level of tax revenue, we may obtain another equal sacrifice post-tax func-
tion which raises at least this prespecified level of revenue.12 Consequently,
the criticism that the principle of equal sacrifice is not relevant in practice
for it is defined independently of the level of tax revenues is, in fact,
unwarranted.13
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12 Claim. Let f # F be an equal sacrifice post-tax function, and let x # Rm
+ be any income

distribution. For any fixed tax revenue 0<R<�m
i=1 xi , there exists an equal sacrifice post-tax

function g # F such that �m
i=1(xi&g(xi))�R.

Proof. Since, by (A1), it is obvious that limn � � f n(x)=0 for all x�0, the claim will be
proved if we can show that f n is an equal sacrifice post-tax function for all n # [1, 2, ...]. (See
footnote 20.) But that f n # F is obvious, and if (1) holds for f, one can easily show by induc-
tion that u(x)&u( f n(x))=nc so that (1) also holds for f n. K

13 In addition, one may construct a theory of equal sacrifice taxation in a setting where the
level of tax revenue to be raised is exogenously fixed. In fact, this is the traditional framework,
and Young [31]'s characterization of equal sacrifice tax methods is obtained precisely in this
sort of a setting. (See also [5] and [6].) Nevertheless, as also discussed in [23], in many
cases where the actual income distribution is not known prior to taxation, it may not be
possible to design a tax policy with a fixed revenue requirement. In such instances, it might
be plausible to outline rather a minimum acceptable level of tax revenue along with an
estimate of the future income distribution, and as the previous footnote demonstrates, this
may well be achieved by equal sacrifice (post-)tax functions.
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3. RESULTS

There seems to be a consensus that the concept of progressive taxation
carries a considerable degree of egalitarianism with it. Almost all countries
use progressive (statutory) taxation schemes and this widespread usage is
usually justified on the basis of income inequality aversion. (See [16] for
an extensive survey.) Indeed, it is well known that a progressive post-tax
function maps a pre-tax income distribution to a more equal post-tax dis-
tribution (in the sense of relative Lorenz dominance). Therefore, all
progressive post-tax functions are inequality reducing, and hence, they all
pass a specific test of distributive justice. We propose another test based on
the principle of equal sacrifice: the question is whether all progressive post-
tax functions are equal sacrifice. If the answer to this question was yes, then
one would conclude that the principle of equal sacrifice is a very weak prin-
ciple in that it is not useful in further refining the broad class of progressive
taxes on the basis of redistributive justice. On the other hand, if the answer
was no, then this would mean that the principle of equal sacrifice can be
effectively used in assessing the normative properties of progressive
taxation.

This appears to be a natural way of making use of the principle of equal
sacrifice. It seems to us that the reason this question is not at all addressed
in the literature is because the analysis of Samuelson [27, p. 227] is usually
taken to imply that the principle of equal sacrifice has no selective power.14

Many authors (and even some textbooks on public finance) appear to
indicate that any progressive post-tax function can be equal sacrifice with
respect to a strictly increasing and concave utility function u with a relative
risk aversion coefficient greater than 1. Our first result identifies a subclass
of progressive post-tax functions which are not equal sacrifice, and hence,
shows that this contention is unwarranted.

Theorem 1. Let f # Fprog. If there exists x0>y>0 such that y� f (x0)
and

f $+(x0) f $+( f (x0))> f $+( y),
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14 Put precisely, what [27] shows is the following: given a post-tax function f # F and a
concave and strictly increasing utility function u: R++ � R satisfying (1), f is progressive if
and only if

} u$+(x& f (x))(x& f (x))
u$+( f (x)) f (x) }�1 for all x>0.

But this observation is far from clarifying under what conditions (1) can be satisfied for a
given f # F. Indeed, [19] presents an extensive discussion to the effect of showing that the
functional equation of (1) can prove to be rather demanding depending on the properties of
utility functions.
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then there does not exist a strictly increasing and concave utility function
u: R++ � R such that

_c>0: [\x>0: [u(x)&u( f (x))=c]].15

A related result is reported in Mitra and Ok [19]: For almost any non-
concave piecewise linear post-tax function, there does not exist a strictly
increasing and concave utility function u which is differentiable near origin
and which satisfies (1). However, it is pointed out to us that the driving
force behind this observation may well be the mathematical incompatibility
between the differentiability of u and the non-differentiability of the post-
tax function at finitely many points. On the other hand, Theorem 1 shows
that the main premise of [19] can be salvaged even in the absence of these
restrictive assumptions: a progressive (post-)tax function need not be equal
sacrifice.

To deal with the converse of this theorem we need to study the
progressive post-tax functions f # Fprog such that

\x>0: [\y # [ f (x), x): [ f $+(x) f $+( f (x))� f $+( y)]]. (2)

Unfortunately, condition (2) is not strong enough to guarantee the
existence of a strictly increasing and concave utility function u such that (1)
holds. However, if we assume a slightly stronger condition than (2), namely
that

\x>0: [\y # [ f (x), x): [ f $+(x)� f $+( y)]] (3)

we obtain a definitive answer:

Theorem 2. Let f # F. If (3) holds, then f is an equal sacrifice post-tax
function.16

Clearly, Theorems 1 and 2 remain silent with respect to the progressive
post-tax functions which satisfy (2) but do not satisfy (3). In the next sec-
tion, by presenting appropriate examples, we shall show that such post-tax
functions may or may not satisfy (1). The characterization of such post-tax
functions which satisfy the principle of equal sacrifice (preferably by a
set of easily checkable conditions) stands as an open problem at the
moment.
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15 The theorem remains intact if we drop the assumptions of continuity and surjectivity of
f( } ) and (A3); these properties are not used in the proof of Theorem 1 given in Section 5.

16 We should note that different versions of this theorem are proved in [23] and [19]. The
present formulation is, however, substantially more general than the earlier versions, and of
course, covers them as special cases.
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4. EXAMPLES

Theorems 1 and 2 together give a very practical way of checking if a
given post-tax function is equal sacrifice or not.17 Our first example
illustrates the applicability of these results to the actual taxation practice.

Example 1. Define

0.9x, 0�x<80

f (x; :)#{:x+(72&80:), 80�x<90

0.7x+(10:+9), 90�x,

and notice that for any : # (0, 1), f ( } ; :) # F. Moreover, f ( } ; :) is a
progressive post-tax function if and only if : # (0, 0.9). Now, one can easily
check that if f (90; :)�80, then (2) holds. So, to apply Theorem 1, let
f (90; :)=10:+72<80; that is, :<0.8. Choose x0=90 and notice that,
for any y # [ f (90; :), 90)/(80, 90), we have f $+(90; :) f $+( f (90; :); :)>
f $+( y; :) if and only if 0.9(0.7)=0.63>:. Thus, one concludes that

_x>0: [_y # ( f (x; :), x): [ f $+(x; :) f $+( f (x; :); :)� f $+( y; :)]]

if and only if : # (0, 0.63). Therefore, in view of Theorem 1, f ( } ; :) is a
progressive post-tax function which is not equal sacrifice as long as
0<:<0.63. Conversely, if 0.7�:<0.9, then by Theorem 2, f ( } ; :) is a
progressive tax which inflicts the same sacrifice upon all income levels
relative to a strictly increasing and concave utility function. The indeter-
minacy region for : corresponding to the case where (2) holds but (3) does
not, is [0.63, 0.7). As noted above, whether f (x; :) with 0.63�:<0.7 is
equal sacrifice or not is an open question.18

In the next two examples, we shall demonstrate that a progressive post-
tax function which satisfies (2) but does not satisfy (3) may or may not be
an equal sacrifice post-tax function. Therefore, the subclass of Fprog where
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17 Although our primary focus in this paper is on progressive post-tax functions, we note
that Theorems 1 and 2 remain valid if we replace Fprog by F in their statements.

18 More generally, let f # F be defined by

:1x, x # [0, b1)

f (x)#{:2x+%1 , x # [b1 , b2).

:3x+%2 , x # [b2 , �)

Then, the hypothesis of Theorem 1 holds if, and only if, :3b2+%2<b1 and :2<:1 :3 . Thus,
under these conditions one can conclude that f is not an equal sacrifice post-tax function. On
the other hand, if :1>:2>:3 , then Theorem 2 entails that f is equal sacrifice.
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Theorems 1 and 2 are silent contain both equal sacrifice and unequal sacri-
fice post-tax functions. In other words, the converse of neither Theorem 1
nor Theorem 2 holds true: Example 2 illustrates that a progressive post-tax
function that does not satisfy the precedent of Theorem 1 can be unequal
sacrifice; and Example 3 shows that a progressive post-tax function can be
equal sacrifice without being concave (that is, without satisfying (3)).

Example 2 (Lindsey II).19 Let

h(x)#{
0.1, if 0�x<1

0.04, if x # .
k # [0, 2, ..., 98] _1+

k
100

, 1+
1+k
100 +

0.05, if x # .
k # [1, 3, ..., 99] _1+

k
100

, 1+
1+k
100 +

0.04, if 2�x,

and define

f (x)#|
x

0
h(u) du for all x�0.

It is easy to observe that f # F. One can also directly verify that, for
any x>0, �x

0 h(u) du�xh(x) so that f # Fprog. Here we find that

max
x, z>0

h(x) h(z)<min
y>0

h( y)

so that (2) is trivially satisfied (while (3), of course, fails). We claim that
f is not an equal sacrifice post-tax function. Assume, by way of contradic-
tion, that (1) holds for some strictly increasing and concave u: R++ � R.
Then, upon iteration, we must have u(x)=u( f n(x))+nc, and hence,

u$+(x)=u$+( f n(x)) dn(x) for all x>0 and n # [..., &1, 0, 1, ...], (4)

where dn(x)#( f n)$+ (x) for all x>0 and n # Z, and where the right dif-
ferentiability of u follows from its hypothesized concavity.20 Now define

sk# f \1+
k&1
100 + for all k # [1, ..., 99], and nk={1,

0,
if k is odd
if k is even.
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19 This interesting example is communicated to us by Professor John Lindsey II; we grate-
fully acknowledge our debt to him.

20 For any function .: R+ � R and any n # [0, 1, ...], we define the nth iterate of . as the
function .n(x)#(. b } } } b .)(x) for all x>0, where the composition operator is applied n
times.
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Choosing x # [ f &nk(sk), f &nk(sk+1)] and n=nk in (4), we obtain, for all
k # [1, ..., 98],

u$+( f &nk(sk))=u$+(sk) dnk( f &nk(sk))

and

u$+( f &nk(sk+1))=u$+(sk+1) dnk( f &nk(sk+1)).

By concavity of u and the fact that f &nk(sk+1)> f &nk(sk), we thus have

dnk( f &nk(sk))

dnk( f &nk(sk+1))
�

u$+(sk+1)
u$+(sk)

for all k # [1, ..., 98]. (5)

On the other hand, choosing first n=n99&1 and x= f &n99+1(s99), and
then n=n99 and x= f &n99(s1) in (4), we have u$+( f &n99+1(s99))=
u$+(s99) dn99&1( f &n99+1(s99)), and u$+( f &n99(s1))=u$+(s1) dn99

( f &n99(s1)),
respectively. Thus, by concavity of u and the fact that f &n99+1(s99)<
f &n99+1(1)= f &n99( f (1))= f &n99(s1), we have

dn99&1( f &n99+1(s99))

dn99
( f &n99(s1))

�
u$+(s1)
u$+(s99)

.

Combining this with (5) yields that

A#\ `
98

k=1

dnk( f &nk(sk))

dnk( f &nk(sk+1))+
dn99&1( f &n99+1(s99))

dn99
( f &n99(s1))

�\ `
98

k=1

u$+(sk+1)
u$+(sk) + u$+(s1)

u$+(s99)
=1.

But by direct computation, dnk( f &nk(sk))�dnk( f &nk(sk+1)) is found to be
equal to 0.04�0.05=0.8 if k # [1, 3, ..., 97] and 1 if k # [2, 4, ..., 98] so that
A=(0.8)49 (1�0.04)&0.00044<1, a contradiction. We conclude that f is
not an equal sacrifice post-tax function.

Example 3. Define

3x�4, if 0�x�1

g(x)#{(x�4)+(1�2), if 1<x�2

x�2, if 2<x.

It can be easily checked that g # Fprog. While proving Theorem 2 in
Section 5, we shall show that, for any f # F and x�0, the iteration
sequence f n(x)�( f $+(0))n converges in R+ and, for any c>0, u: R++ � R
defined as
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u(x)#
&c

log f $+(0)
log lim

n � �

f n(x)
( f $+(0))n for all x>0,

satisfies u(x)&u( f (x))=c for all x>0. Therefore, if we can show that the
function h: R+ � R+ defined by h(x)#limn � �( 4

3)n gn(x) for x�0, is a
concave and strictly increasing function, we may conclude that g is, in fact,
an equal sacrifice post-tax function. Now, for n # [3, 4, ...] we have

hn(x)#\4
3+

n

gn(x)

=

x, if 0�x�1

\4
3+\

1
4

x+
1
2+ , if 1<x�2

\4
3+

2

\1
4 \

x
2++

1
2+ , if 2<x�g&1(2)

} } }, } } }

\4
3+

n&1

\1
4 \

x
2n&2++

1
2+ , if g2&n(2)<x�g1&n(2)

\4
3+

n

\1
4 \

x
2n&1+++

1
2

, if g1&n(2)<x�g&n(2)

\4
3+

n x
2n , otherwise.

Clearly, hn is convave on [0, g&n(2)], and [ g&n(2)]�
n=1 is a strictly

increasing sequence such that limn � � g&n(2)=limn � � 2n+1=�. There-
fore, h is concave on [0, 1] _ [1, 2] _ ��

n=1[2, g&n(2)]=[0, �). Since h
is concave and h$+(x)>0 for all x # [0, 2], we have

h(b)&h(a)
b&a

�h$+(b)>0 whenever 0�a<b�2,

and so h is strictly increasing on [0, 2]. Let x1 , x2 # g&1([0, 2]) and
x2>x1 . Then (x1 , x2)=( g&1(a), g&1(b)) for some a, b # [0, 2] such that
b>a, and by strict monotonicity of h on [0, 2],

3
4h(x2)= 3

4h( g&1(b))=h(b)>h(a)= 3
4h( g&1(a))= 3

4h(x1)

so we can conclude that h is strictly increasing on g&1([0, 2]). But then,
by an easy induction argument, it follows that h must be strictly increasing
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on limn � � g&n([0, 2])=[0, �). We conclude that g is an equal sacrifice
post-tax function.21

Our final example is about the robustness of our findings with respect to
the boundary condition (A3). One can easily check that (A3) is not
necessary for Theorem 1. Indeed, the proof of Theorem 1 given in the next
section makes no reference to this assumption. On the other hand, since
this assumption is used crucially in the proof of Theorem 2, it is not at all
clear if it is necessary for this result. The following example shows that it
is not. Therefore, Theorem 2 is also not tight with respect to the relaxation
of (A3).

Example 4. Let ; # (0, 1) and define

f (x)#{;x&(;x3�2�2),
;x�(x+1),

0�x<1
1�x.

Then, f is a differentiable, surjective and concave function which satisfies
(A1) and (A2). For any K>0, there exists x0>0 such that |;& f (x)�x|=
;x�2 - x>Kx for all x # (0, x0), so f does not satisfy (A3). We claim that
f satisfies (1), however. Let us first note that if limn � � f n(x)�;n # (0, �)
then, for any c>0,

u(x)#\ &c
log ;+ log lim

n � �

f n(x)
;n for all x>0

defines a concave and strictly increasing utility function such that
u(x)&u( f (x))=c for all x>0. (The detailed proof of this assertion is given
in the next section.) Therefore, all we have to show to conclude that f is
equal sacrifice is that h(x)>0 for all x>0, where h: R+ � R+ is defined by
h(x)#limn � � f n(x)�;n. By strict concavity of f, x [ f (x)�x is strictly
decreasing, and this implies that ;> } } } > f n+1(x)�f n(x)> } } } > f (x)�x for
any x>0 and positive integer n. Therefore,

h(x)= `
�

n=0

f n+1(x) x�;f n(x) # [0, �) for all x>0
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21 This example establishes that a progressive but not concave post-tax function may be
equal sacrifice. In fact, even a convex post-tax function can be equal sacrifice; in a private
communication, Professor John Lindsey II showed that the post-tax function f (x)#
1
2 (x&a log(1+x)) with a # (1, 1�10) is equal sacrifice with respect to a concave and strictly
increasing utility function. See, however, [19].
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so that all we have to check is that h(x)>0 for all x>0. Now, for any
x>0, h(x)>0 if and only if ��

n=0(1& f n+1(x)�;f n(x)) converges (cf.
Theorem 4 of Knopp [15], p. 220). But

:
�

n=0
\1&

f n+1(x)
;f n(x) +=

1
2

:
�

n=0

- f n(x) for all x # [0, 1],

so that choosing x=1 and noting that

- f n(1)�(- ;)n�- 2 for all n # [0, 1, ...],

we learn that ��
n=0 - f n(1)<�, and therefore h(1)>0. By the

monotonicity of f, h is a non-decreasing function, and hence by the pre-
vious observation, we must have h(x)>0 for all x�1. Finally, since h is
a concave function (being the limit of a convergent sequence of concave
functions) and h(0)=0, we have h(x)�x�h(1) for all x # (0, 1), so that
h(x)>0 for all x # (0, 1) as well, and the claim is proved.22

5. PROOFS

Proof of Theorem 1. Assume the hypotheses of the theorem, and let

u(x)&u( f (x))=c for all x>0,

for some c>0 and u: R++ � R which is strictly increasing and concave.
Then, for any x>0 and =>0,

u(x+=)&u( f (x+=))=u(x)&u( f (x)).

Pick an arbitrary z>0. Then, since f $+(z)>0, there is =� >0 such that for
all 0<=<=� , we have f (z+=)& f (z)>0 (cf. Graves [12, Theorem 2,
p. 70]). But then we can write
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22 In effect, this example establishes the fact that (A3) is not necessary for limn � �

f n(x)�;n # (0, �) for all x>0. The following result, due to Seneta [28], gives a necessary and
sufficient condition for this convergence to hold: limn � � f n(x)�;n # (0, �) for all x>0 if, and
only if,

|
�

1 \;
a

& f \1
a++ da<�.

(In Example 4, for instance, we have ��
1 (;�a& f (1�a)) da=;.) (A3), of course, implies this

integral condition, but not conversely.



File: 642J 224415 . By:DS . Date:16:04:97 . Time:11:37 LOP8M. V8.0. Page 01:01
Codes: 2825 Signs: 1278 . Length: 45 pic 0 pts, 190 mm

u(z+=)&u(z)=u( f (z+=))&u( f (z))

=( f (z+=)& f (z)) \u( f (z)+( f (z+=)& f (z)))&u( f (z))
f (z+=)& f (z) +

for 0<=<=� . Thus, for all 0<=<=� ,

u(z+=)&u(z)
=

=\ f (z+=)& f (z)
= +\u( f (z)+( f (z+=)& f (z)))&u( f (z))

f (z+=)& f (z) + .

Letting = � 0, and noting that f (z+=)& f (z)>0 for 0<=<=� , we obtain

u$+(z)= f $+(z) u$+( f (z)) for all z>0. (6)

Now, since x0>y and u is concave, u$+( y)�u$+(x0), and (6) yields

u$+( f ( y))�\ f $+(x0)
f $+( y) + u$+( f (x0)). (7)

Letting z= f (x0) in (6), u$+( f (x0))= f $+( f (x0)) u$+( f 2(x0)) and so (7) gives

u$+( f ( y))�\ f $+(x0) f $+( f (x0))
f $+( y) + u$+( f 2(x0)). (8)

But since f (x0)<y and f is strictly increasing, f 2(x0)< f ( y) and by con-
cavity of u, u$+( f 2(x0))�u$+( f ( y)). Therefore, (8) gives

u$+( f 2(x0))�\ f $+(x0) f $+( f (x0))
f $+( y) + u$+( f 2(x0))

and this contradicts the hypothesis that f $+( y)< f $+(x0) f $+( f (x0)). K

Proof of Theorem 2. Let f # F and assume that (3) holds. Suppose that
there exist x0>0 and y>0 such that x0>y and f $+(x0)> f $+( y). Since
0< f (x0)<x0 , we have limn � � f n(x0)=0, and therefore, there must exist
a positive integer n0 such that y # [ f n0+1(x0), f n0(x0)). (Here f 0(x)=x, and
for any n�1, f n is the n th iterate of f ; see footnote 20.) Applying (3) at
x= f n0(x0), we then have

f $+( f n0(x0))� f $+( y)< f $+(x0).

But this is impossible, for by applying (3) successively,

f $+(x0)� f $+( f (x0))� f $+( f 2(x0))� } } } � f $+( f n0(x0)).

330 MITRA AND OK



File: 642J 224416 . By:DS . Date:16:04:97 . Time:11:37 LOP8M. V8.0. Page 01:01
Codes: 2144 Signs: 998 . Length: 45 pic 0 pts, 190 mm

We therefore conclude that f $+(x)� f $+( y) whenever 0<y<x; that is, f $+ is
decreasing on (0, �). Since f is continuous, we can apply Proposition 18 of
Royden [26, p. 114], to conclude that f is concave on (0, �).

Now let f $+(0)=; and define, for any x>0,

hn(x)#
f n(x)

;n for all n # [0, 1, ...] and h(x)# lim
n � �

hn(x).

Assume for the moment that h(x) # (0, �) for all x>0, and, for any c>0,
define the function u: R++ � R as

u(x)#
&c

log ;
log h(x) for all x>0.

Note that h is the limit function of a convergent sequence of concave func-
tions, and hence, it is concave on (0, �). This implies that u is a concave
function. Moreover, for all x>0,

&c
log ;

log lim
n � �

f n+1(x)
;n =

&c
log ;

log \; lim
n � �

f n+1(x)
;n +

=
&c

log ;
log lim

n � �

f n(x)
;n &c,

that is, u( f (x))=u(x)&c.
We now proceed to show that h(x) # (0, �). Let x>0 be arbitrary. We

have, for all n # [0, 1, ...],

f n+1(x)
;n+1 =

f ( f n(x))
;f n(x)

f ( f n&1(x))
;f n&1(x)

} } }
f (x)
;x

x

so that

h(x)= lim
n � �

f n(x)
;n =\ `

�

n=0

f n+1(x)
;f n(x) + x.

Therefore, h(x) # (0, �) if and only if

`
�

n=0

f n+1(x)
;f n(x)

# (0, �). (9)
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Since f is concave, t [ f (t)�t is decreasing. Moreover, limt � 0 f (t)�t=;, and
hence f n(x)�;f n&1(x)�1 for each n. Consequently, by Theorem 4 of [15,
p. 220], (9) holds if and only if

:
�

n=0
\1&

f n+1(x)
;f n(x) + (10)

is convergent. By (A3) and the fact that limn � � f n(x)=0, there must exist
an integer N and K>0 such that

} f ( f n(x))
f n(x)

&; }�Kf n(x) whenever n�N

and thus,

:
�

n=N \1&
f n+1(x)
;f n(x) +�

K
;

:
�

n=N

f n(x). (11)

We shall next show that ��
n=N f n(x) is convergent. Let # # (;, 1). Notice

that since [ f n+1(x)�f n(x)]�
n=0 is a sequence converging to ;, there exists

an integer L such that n�L implies f n+1(x)<#f n(x). But this yields

f L+l(x)<#lf L(x) for all l=1, 2, ...,

and therefore, we have

:
�

n=L

f n(x)< f L(x) :
�

l=0

#l<�.

Combining this observation with (11), we learn that the series in (10) is
convergent, which proves (9).

Finally, we show that h is strictly increasing. To this end, note that h is
continuous on (0, �) since it is concave on (0, �). Furthermore, in the
process of establishing (9) above, we noted that, given any x>0 and
positive integer n, f n+1(x)�;f n(x)�1, and so hn(x)�x. Thus, for every
x>0, 0�h(x)�x so that h is continuous at 0 as well. Since h(0)=0 and
h(x)>0 for x>0, we must have h$+( y)>0 for some y>0 (cf. [26,
Proposition 2, p. 99]). Then, by concavity of h, h$+(x)>0 for all x # (0, y);
that is h is strictly increasing on (0, y). Now, let x1 , x2 # f &1((0, y)) and
x2>x1 . Then, x1=f &1(a) and x2=f &1(b) for some a, b # (0, y) such that
b>a. Since h satisfies h( f (x))=;h(x) for all x�0, we have ;h( f &1(b))=
h(b)>h(a)=;h( f &1(a)) since h is known to be strictly increasing on
(0, y). Thus, h( f &1(b))=h(x2)>h(x1)=h( f &1(a)) proving that h is strictly
increasing on f &1((0, y)). By induction, it follows that h is strictly increasing
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on f &n((0, y)) for all n # [0, 1, ...] which, in turn, implies that h is strictly
increasing on ��

n=0 f &n((0, y))=(0, limn � � f &n( y)). But by (A2),
} } } >f &2( y)>f &1( y)>y so that [ f &n( y)]�

n=0 is a strictly increasing
sequence. If [ f &n( y)]�

n=0 was bounded, then we would have
limn � � f &n( y)=M for some M>0, and by continuity of f &1 and (A2),
we would obtain the following contradiction:

lim
n � �

f &(n+1)( y)= lim
n � �

f &1( f &n( y))= f &1( lim
n � �

f &n( y))= f &1(M)>M.

Therefore, [ f &n( y)]�
n=0 cannot be bounded, and we conclude that

limn � � f &n( y)=�. Consequently, h, and thus u, is strictly increasing on
(0, �). K
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